- Natural numbers N={1,2,3,4,...}
- Whole numbers W={0,1,2,3,...}
- Integers I={0,±1,±2,...}
- Ration numbers Q={x∣x=ba,where a,b∈I,b=0}
- Irrational numbers Q′=px such that pth root can't find correctly.
- Read numbers = Q∪Q′
If ba=dc then
- ab=cd
- ca=db
- ba+b=dc+d
- ba−b=dc−d
- a−ba+b=c−dc+d
- ba=dc=bl+mdal+mc
- b+da+c=b2+d2a2+c2
- (a+b)2=a2+2ab+b2
- (a−b)2=a2−2ab+b2
- (a+b)3=a3+3a2b+3ab2+b3
- (a+b)3=a3−3a2b+3ab2+b3
- (a+b)n=an+nC1an−1b+nC2an−2b2+...+bn
- (a−b)n=an−nC1an−1b+nC2an−2b2−...+(−1)nbn
- a2−b2=(a+b)(a−b)
- a3−b3=(a−b)(a2+ab+b2)=(a−b)3+3ab(a−b)
- a3+b3=(a+b)(a2−ab+b2)=(a+b)3−3ab(a+b)